
H2020-ICT-2018-2-825040

Rational decomposition and orchestration for serverless
computing

Deliverable 5.1

Runtime Environment 1

Version: 1.0

Publication Date: 19-December-2019

Disclaimer:

The RADON project is co-funded by the European Commission under the Horizon 2020
Framework Programme. This document reflects only authors’ views. EC is not liable for any use
that may be done of the information contained therein.

Ref. Ares(2019)7868924 - 20/12/2019

Deliverable 5.1: Runtime Environment 1

Deliverable Card

Deliverable 5.1

Title: Runtime Environment 1

Editor(s): Matija Cankar (XLAB)

Contributor(s):
Anestis Sidiropoulos (ATC), Hans Georg Næsheim (PRQ), Mainak
Adhikari (UTR), Satish Srirama (UTR), Matija Cankar (XLAB),
Kristian Žarn (XLAB), Vladimir Yussupov (UST)

Reviewers: Michael Wurster (UST), Domenica Presenza (ENG)

Type: Report

Version: 1.0

Date: 19-December-2019

Status: Final

Dissemination level: Public

Download page: http://radon-h2020.eu/

Copyright: The RADON project partners

The RADON project partners

IMP IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE

TJD STICHTING KATHOLIEKE UNIVERSITEIT BRABANT

UTR TARTU ULIKOOL

XLB XLAB RAZVOJ PROGRAMSKE OPREME IN SVETOVANJE DOO

ATC ATHENS TECHNOLOGY CENTER ANONYMI BIOMICHANIKI EMPORIKI
KAI TECHNIKI ETAIREIA EFARMOGON YPSILIS TECHNOLOGIAS

ENG ENGINEERING - INGEGNERIA INFORMATICA SPA

UST UNIVERSITAET STUTTGART

PRQ PRAQMA A/S

The RADON project (January 2019 - June 2021) has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 825040

Page 2 of 47

http://radon-h2020.eu/

Deliverable 5.1: Runtime Environment 1

Executive summary

The aim of this deliverable is to provide a technical overview of the RADON tools that comprise
the Runtime Environment. Through the review, users will learn the current year one (Y1) status of
each tool and understand the technical details that are required for RADON.

The status of each tool is presented with the description of tool, listing the interface options, and
listing of basic and required features. The tool capabilities are also demonstrated with a simple
thumbnail generator example, which is our FaaS toy example for such demonstration. Further, the
tools are evaluated by their current maturity and level of compliance with RADON requirements.
Finally, each tool also has a short description about the future plans and immediate issues to be
tackled.

Page 3 of 47

Deliverable 5.1: Runtime Environment 1

Glossary

Term Meaning

API Application Programming Interface

AWS Amazon Web Services

CI / CD Continuous Integration / Continuous Delivery

CLI Command Line Interface

CSAR Cloud Service Archive

CTT Continuous Testing Tool

EC2 Elastic Compute Cloud

FaaS Function as a Service

GMT Graphical Modelling Tool

GUI Graphical User Interface

IDE Integrated Development Environment

REST Representational State Transfer

SaaS Software as a Service

VM Virtual Machine

Yn Year n of the project.

Page 4 of 47

Deliverable 5.1: Runtime Environment 1

Table of contents

1 Introduction 7
1.1 Deliverable objectives 7
1.2 Overview of all achievements 7
1.3 Structure of the document 8

2 Runtime environment 9
2.1 Overview of Runtime Tools 9
2.2 High level Architecture 10
2.3 Methodology and Requirements 11

3 Tools 14
3.1 Monitoring 14

3.1.1 Description and interfaces 14
3.1.2 Installation and setup 17
3.1.3 Current maturity level 17
3.1.4 Toy example demo 18
3.1.5 Future plans 18

3.2 Template library 19
3.2.1 Description and interfaces 19
3.2.2 Installation and setup 21
3.2.3 Current maturity level 22
3.2.4 Toy example demo 22
3.2.5 Future plans 22

3.3 Delivery toolchain 22
3.3.1 Description and interfaces 22
3.3.2 Installation and setup 23
3.3.3 Current maturity level 23
3.3.4 Toy example demo 23
3.3.5 Future plans 23

3.4 Orchestrator 23
3.4.1 Description and interfaces 23
3.4.2 Installation and setup 26
3.4.3 Current maturity level 26
3.4.4 Toy example demo 27
3.4.5 Future plans 27

3.5 Continuous integration 27
3.5.1 Description and interfaces 27

Page 5 of 47

Deliverable 5.1: Runtime Environment 1

3.5.2 Installation and setup 28
3.5.3 Current maturity level 29
3.5.4 Toy example demo 29
3.5.5 Future plans 30

3.6 Continuous deployment 30
3.6.1 Description and interfaces 30
3.6.2 Installation and setup 31
3.6.3 Current maturity level 31
3.6.4 Toy example demo 31
3.6.5 Future plans 31

3.7 Function Hub 31
3.7.1 Description and interfaces 31
3.7.2 Installation and setup 32
3.7.3 Current maturity level 32
3.7.4 Toy example demo 32
3.7.5 Future plans 32

4 Conclusions and Future Work 34
4.1 Future work 35

5 References 37

6 Appendix A 37
6.1 Walkthrough: Use the Orchestrator to deploy RADON toy example 37
6.2 Walkthrough: General purpose Monitoring Tool Setup 39
6.3 Walkthrough: Toy Example Monitoring Tool Setup 44

Page 6 of 47

Deliverable 5.1: Runtime Environment 1

1 Introduction
The Runtime environment deliverable presents the RADON toolset that bridges the Dev part,
where applications are developed and configured, to the Ops part, where the testing, staging and the
whole application lifecycle is instantiated. From the RADON actors perspective, the Runtime
environment uses the outputs from the tools used mainly by Software designer and Software
developer and equips Operation engineer, Release manager and QoS engineers with necessary tools
for their daily work.

This deliverable provides a more detailed and technical overview of the delivery toolchain tools
and supporting tools introduced in D2.1 and D2.3 with a goal to present the current state - in this
document referred to as year one (Y1) - of each component and provide the basis for the detailed
specification of the development and integration for year two (Y2).

1.1 Deliverable objectives

The main objective of the deliverable is to present the current status of the work and research done
in Runtime environment technologies. For each technology or idea we choose a particular
instantiation as a tool already available or a tool that still needs development to fulfil the RADON
Runtime toolchain environment.

Objectives of this deliverable are:

● Present the general picture of RADON Runtime environment and delivery toolchain.
● For each tool provide a particular example and describe:

○ Currently available interfaces.
○ Review the requirements/complexity of handling with the tool (installation, setup,

configuration)
○ Maturity level:

■ Which RADON requirements can be already fulfilled with the tool.
■ Which tool interfaces are already sufficient for the RADON development

○ Demonstrate (if possible) how the tool can be used with RADON toy example, e.g.,
thumbnail generator.

○ Future plans and expectations for Y2.
● Populate the WP5 requirements table with achieved levels of compliance.

1.2 Overview of all achievements

The main achievement evident from this deliverable is the progress from the architectural planning
to the concrete development and integration state. The tools and technologies presented in previous
deliverables as (D2.3) are evaluated through detailed inspection of the available functionality and
the examples of usage like for example the xOpera orchestrator in section 3.4 Orchestrator. The

Page 7 of 47

Deliverable 5.1: Runtime Environment 1

descriptions of the tools are described in detail to show all missing functionality that still needs to
be developed, like for example the Template library in section 3.2 Template library was not
deployed as it needs to be developed first. Therefore a detailed description was included.

This presents our status on the RADON field where all the implementation will be done. This status
report was achieved by all tool owners that deployed, installed and configured their tools and
prepared the instructions on how this can be done and which are the current limits to integrate them
in RADON.

1.3 Structure of the document

Section 2 presents an overview of the Runtime environment and the high level architecture. At the
end of the section, two requirements of the Runtime environment are stated and the methodology of
determining a tool maturity level is presented.

Section 3 presents tool by tool integrated in the Runtime environment and explains how the tools
are used, which technical skills are required to manage this tool and how this tool can be currently
tested in action on particular example. Where needed, the section invites the reader to read more
technical readmes from the Internet or walkthroughs from the Appendix of this document.

Section 4 concludes the document with the requirement compliance table and future work.

As already mentioned, Appendix includes detailed installation and configuration descriptions that
were too detailed for section 3.

Page 8 of 47

Deliverable 5.1: Runtime Environment 1

2 Runtime environment

In this document we describe the overall runtime environment of the RADON framework. A
preliminary presentation of the runtime tools, planned to be developed in RADON, has been
provided in D2.1 [RadD2.1]. The main focus of this section is to describe the overview of the
runtime tools and how the tools interact with each other in order to meet the objectives of the
project. In particular, Section 2.1 provides an overview of the runtime tools and how the tools are
connected with RADON IDE.

2.1 Overview of Runtime Tools

The RADON framework provides a set of components that realize a set of runtime tools for
application development and deployment. Table 1 lists the set of runtime tools with brief
descriptions.

Table 1. Overview of Runtime RADON components

Name Description

Monitoring System A back-end system to collect the resource utilization from the runtime
environment for supporting the quality assurance of the system including
auto-scaling and security.

Template Library A central point for retrieving and storing the application artifacts as modules,
blueprints, and FaaS abstraction modules.

Delivery Toolchain A set of tools for software delivery and inherits the functionalities from the
particular enclosed tool.

Orchestrator A tool for putting an application on the run-time environment by enforcing the
state described by the application blueprint (CSAR) onto the target provider.

Data Pipeline
Orchestration Module

A module that extends the orchestrator with the capability to control the life
cycle of data pipelines, introducing the ability to automate the movement and
transformation of data.

Continuous
Integration

A tool for managing the code, functions and configuring together and finally test
it.

Continuous
Deployment

A tool that deploys the new application version in staging or production
environment.

Function Hub A public repository for open-sourced contribution to reusable functions.

Page 9 of 47

Deliverable 5.1: Runtime Environment 1

2.2 High level Architecture

In the runtime environment, initially, the RADON user employs the Graphical Modelling Tool
(GMT) to create a new application blueprint in the form of a TOSCA topology template. The
CSAR contains everything that is required for deployment including all business component
artifacts (e.g., FaaS function code) for deployment execution. For modeled application components,
the respective source code project can be opened in the RADON IDE.

The template library is a repository of application runtime management definitions including the
blueprints, high-level system abstractions, application abstractions (including data pipeline
components) and TOSCA language extensions. The template library is responsible for application
planning, CSAR generation, and blueprint design. During runtime, the blueprint or its parts could
be designed separately. Here, it is assumed that a RADON user would like to support new
functionalities or new providers that require new blueprint artifacts or blueprints that are not
created only for deployment but rather as an example or closed workflow to use.

The orchestrator puts the application into the runtime environment by enforcing the state described
by application blueprint (CSAR) onto the targeted cloud/FaaS provider. The common operations
are application deployment, resource scaling, and un-deploy. At first, the orchestrator interprets the
CSAR and enforces its blueprint on the infrastructure. Beside pure deployment of the application,
orchestrator must be able to configure triggering events for FaaS and setting up the monitoring
metrics. In addition, the data pipeline orchestration module of the tool controls the life cycle of data
pipelines, introducing the ability to automate the movement and transformation of data. Next, to
support the application flow and scalability of the computing resources in the form of CPU and
memory, the events need to be configured and appropriate monitoring service needs to be
subscribed in the orchestrator.

The resource monitor component is mainly responsible for monitoring the computing resources in
each time instance (e.g. every minute). Here, we use Prometheus and Grafana as resource monitors,
which are described in detail in Section 3.1. The orchestration scale-up or scale-down the
computing resources or applications after receiving an alert signal from the monitoring system.

Finally, when the application lifecycle reaches the endpoint, the application instances are removed
from the environment. The overall runtime workflow of the applications is shown in Figure 1.

Page 10 of 47

Deliverable 5.1: Runtime Environment 1

Figure 1. Runtime Tools integration

2.3 Methodology and Requirements

To review the current state of the tools in the Runtime environment, the following methodology
was chosen. First, for each tool we present a short description and if possible demonstrate how the
tool is deployed, configured and used in case of the thumbnail generator - the RADON toy
example. These technical details provide us an important insight of the complexity, compatibility
and current tool maturity. To understand the compliance with the final RADON results, for each
tool we determine compliance with the requirements from Table 2. As the project is currently in
year one (Y1), many tools will still have unfulfilled requirements.

The tool reviews, maturity levels and compliance levels will serve the WP5 tasks to prepare a
detailed specification and work plan for Y2. As the goal of Y1 is to understand how each piece of

Page 11 of 47

Deliverable 5.1: Runtime Environment 1

the runtime environment and deployment toolchain works individually and interfaces with other
pieces, in Y2 we would like to achieve the automated deployment and move closer to automated
configuration of all tools. Achieving this automation will allow us easier deployment of the whole
RADON environment and easier preparation of the toolchain for each application.

Table 2. List of Runtime environment requirements.
Id Requirement Priority

R-T5.1-1 The orchestrator tasks must be executable through CLI Should have

R-T5.1-2 A user describes the application architecture and dependencies at least
in TOSCA YAML 1.2

MUST_HAVE

R-T5.1-3 The runtime toolchain need to provide a status on each stage of
deployment of the application on the underlying architecture

MUST_HAVE

R-T5.1-4 At the end of deployment, the deployment of services needs to be
verified along with its dependencies

MUST_HAVE

R-T5.1-5 The orchestrator should be able to calculate the diff between the current
state and the desired state expressed by a new model version and
redeploy only the difference.

MUST_HAVE

R-T5.1-6 Support of FaaS deployment to OpenFaas MUST_HAVE

R-T5.1-7 Support of FaaS deployment to AWS cloud platform MUST_HAVE

R-T5.1-8 The xOpera command line interface needs to have a dry run mode to
verify changes without asking for input in execution

COULD_HAVE

R-T5.1-9 When modelling a FaaS, the user can select a specific function by
referencing the location from Function Hub

COULD_HAVE

R-T5.2-1 Support of FaaS_deployment to Google cloud platform COULD_HAVE

R-T5.2-2 Support of FaaS deployment to Azure cloud platform MUST_HAVE

R-T5.2-3 Support deployment to regular VMs MUST_HAVE

R-T5.2-4 Support deployment to microservices architecture MUST_HAVE

R-T5.3-1 The TOSCA blueprint needs to be able to support the definition of
security and privacy policy of specific serverless/FaaS provider.

MUST_HAVE

R-T5.3-2 The tool must be able to configure automatic scaling of the deployed
components based on the auto scaling policies defined in the RADON
models.

MUST_HAVE

R-T5.3-3 The tool must be able to support configuring AWS EC2 auto scaling
service based on the TOSCA auto scaling policy.

MUST_HAVE

R-T5.3-4 The tool should be able to support configuring automatic scaling of
Docker services based on TOSCA auto scaling policies.

SHOULD_HAVE

R-T5.3-5 The TOSCA blueprint must be able to enable users to define the usage
of different FaaS/Serverless providers for different parts of their
application.

MUST_HAVE

Page 12 of 47

Deliverable 5.1: Runtime Environment 1

The maturity of each tool will be discussed in the section describing the tool itself. Overall
compliance level of the tools with the presented requirements is included at the end of the
document.

Presented runtime environment and included tools have different levels of maturity as some of
them are already developed and RADON is only exploiting their functionality and others are yet to
be fully developed. To demonstrate the current ability of the tools, each tool has been used for
managing the toy example - the thumbnail generator application. This hands-on exercise done by
the tool owners, provides a clear understanding what the purpose of each tool is and, in the context
of RADON’s application deployment workflow, precisely presents what are the current
shortcomings.

Page 13 of 47

Deliverable 5.1: Runtime Environment 1

3 Tools
This section presents Runtime environment tools focusing on interfaces, installation, setup, current
maturity level, appliance to the thumbnail generator example and future work.

3.1 Monitoring

3.1.1 Description and interfaces

Monitoring comprises an integral part of the RADON runtime environment, since it aims to provide
monitoring, logging and potentially event notification capabilities for supporting quality assurance
and assessment. In this section, we describe this system and the context of use in the RADON
project.

The Monitoring system is a collection of existing open source tools that are integrated together in
RADON to facilitate functions with respect to the acquisition, processing and visualisation of
metrics from several layers of the infrastructure, aiming at the continuous observation of the
progress and quality of an application. The Monitoring system is designed to be agnostic of the
platform on which the monitored application is deployed and thus the adopted approaches are:

• Monitoring of General Metrics. Based on this approach the metrics are collected on:

● Virtual Machine level (CPU, Memory)
● Docker Container level (CPU, Memory)
● FaaS level (Duration, Invocations, Errors, Throttles, Global Concurrent Executions)
● Application level (CPU, Memory, I/O Traffic)

• Monitoring of Specific Metrics. Based on this approach, the metrics are collected only on
application level. In order for this level of monitoring to be feasible, code snippet injection in
the source code of the application is a mandatory prerequisite. The purpose of the injected code
is to define, collect and expose these application specific metrics to be monitored.

Since the monitoring system is performed on several layers, the following software units are
embedded and configured in order to interface and report metrics on the visualization dashboard of
this Monitoring System:

● Docker, a set of “platform as a service” products that use OS-level virtualization to deliver
software in packages called containers. Containers are lightweight, isolated from one
another and bundle together their own software, libraries and configuration files. They can
communicate with each other through well-defined channels.

● cAdvisor, provides an understanding of the resource usage and performance characteristics
of the running containers to the users. The main component is a running daemon that
collects, aggregates, processes, and provides the information about running containers. For

Page 14 of 47

Deliverable 5.1: Runtime Environment 1

each container, it keeps historical resource usage, resource isolation parameters, network
statistics, and histograms of complete historical resource usage. This data is exported by a
container and is machine-wide."

● Prometheus, a systems’ monitoring and alerting toolkit. Prometheus scrapes metrics from
instrumented jobs. This can be achieved directly or via an intermediary push gateway for
short-lived jobs. Internally it stores all scraped samples locally and runs rules over this data
to either aggregate and record new time series from existing data or generate alerts.

● Prometheus Pushgateway, an intermediary service that allows you to push metrics from
jobs, which cannot be scrapped. The purpose of invoking the Pushgateway is to cover cases
where Prometheus on its own is not sufficient to acquire the metrics e.g. to capture the
outcome of service-level batch job.

● Grafana, an open source metric analytics & visualization suite. It is most commonly used
for visualizing time series data for infrastructure and application analytics but many use it in
other domains including industrial sensors, home automation, weather, and process control.

● Application Configuration, which is a piece of code injected in the source code of the
application to expose strictly application coupled metrics.

● Centralized Monitoring Dashboard, a centralized monitoring dashboard UI that combines
and visualizes in a dynamic way the metrics acquired from all the layers described above.

In Figure 2, we present the architectural components of the Monitoring system and their
orchestration towards providing the expected capabilities for collecting raw monitoring information
and distributing them as monitoring metrics and/or events.

The monitoring metrics are collected by cAdvisor on container level, by a node exporter on VM
level and by injecting code on the source application code. In case of a FaaS, the metrics are
collected from the proprietary Cloud provider monitoring service (for example in case of AWS the
monitoring tool is Cloudwatch). Subsequently, the collected metrics are forwarded to Prometheus
(either directly or through Prometheus Gateway) and Prometheus is configured via queries to
collect and group them. Finally, Grafana is configured (through the action of defining sources) to
ingest these metrics from Prometheus or the Cloud Proprietary Monitoring tools and visualize them
in the relevant dashboards.

Page 15 of 47

Deliverable 5.1: Runtime Environment 1

Figure 2. Orchestration/Architecture of the RADON Monitoring System.

Page 16 of 47

Deliverable 5.1: Runtime Environment 1

3.1.2 Installation and setup

In order for the user to setup and install the monitoring tool, the following expertise is needed:

● AWS console management and EC2 instance configuration (or any other equivalent Cloud
provider to setup a Virtual Machine)

● Linux bash
● PromQL query language (or equivalent)
● Docker deployment
● Prometheus setup and configuration (this includes cAdvisor and push Gateway)
● Grafana setup and configuration
● Application under monitoring code competence (in order to insert code snippets)

For the current prototype version of the Monitoring system, the following prerequisites are needed
and have to be configured:

● Docker, a set of platform as a service products that use OS-level virtualization to deliver
software in packages called containers.

● cAdvisor, which provides an overview and understanding of the resource usage and
performance characteristics of the running containers to the container users

● Prometheus Monitoring, system monitoring and alerting toolkit
● Prometheus PushGateway, allow ephemeral and batch jobs to expose their metrics to

Prometheus
● App Configuration

○ Prom Client, in order to export the application specific ,etrics
● Grafana Dashboards, which is a software for visualization, alerts management and

dashboards creation

Detailed instructions on how to setup and configure the Monitoring System are available in the
Appendix: Walkthrough: General purpose Monitoring Tool Setup

3.1.3 Current maturity level

The current state of the Monitoring System provides a variety of metrics to be monitored, such as:
RAM, CPU, Traffic, concurrent executions, execution time, cost, etc.

Manual configuration is needed as well to make all the used components to work with each other.
Current level of maturity fulfills a subset of requirements expressed by the RADON requirements.

Requirements that remain to be fulfilled in future releases of the Monitoring System are:

1. Alert generation when specified metrics thresholds are exceeded;

Page 17 of 47

Deliverable 5.1: Runtime Environment 1

2. Deployment of the Monitoring System in all the Cloud Providers;
3. Enhancement of the Monitoring System in order to fully interface with the other RADON

Tools. In future releases, other RADON tools will be able not only to acquire and expose
monitoring metrics but also filter them by time unit and also aggregate them.

Future releases of this system will include a wider range of possible metrics to monitor, unified
User Interface for monitoring dashboards and higher level of automation in deploying and
configuring the system.

3.1.4 Toy example demo

In this section, the application/configuration of the Monitoring System prototype on the Toy
example is described. A basic prerequisite is that the toy application can be deployed on any of the
supported serverless computing platforms. In this specific case, AWS Lambda function (and the
Amazon cloud infrastructure in general) has been selected.

The monitoring metric pipelines are described in the Figure 3:

Figure 3. Toy example monitoring approaches.

Detailed instructions on how to setup and configure the Monitoring System are available in the
Appendix: Walkthrough: Toy Example Monitoring Tool Setup

3.1.5 Future plans

The next steps include the finalization of the tool to include all possible metrics that can be
monitored and provided in a wide collection of dashboards. Furthermore, the Monitoring System
will also be able to trigger the generation of user specified alerts. This is feasible either through
Prometheus monitoring or Grafana Dashboards. The principle for setting up this alert based system

Page 18 of 47

Deliverable 5.1: Runtime Environment 1

is to define rules that trigger the sending of alerts to users when specified metrics thresholds are
exceeded.

In addition, investigation is ongoing on possible interactions of the tools comprising the Monitoring
System with other tools of the RADON arsenal. The goal is to adapt the tool in order to be able to
interface with other tools. In the current RADON architecture (as reported in Deliverable D2.3
[RadD2.3]), the following tools are considered:

● Continuous Testing Tool
● Data Pipelines Tool
● Decomposition Tool
● Eclipse Che (IDE)

The aforementioned interactions are bidirectional, meaning that

● The Monitoring System will provide dataset towards other tools (e.g. Decomposition Tool
in order to identify vulnerabilities)

● The Monitoring System may receive metric related data from other Tools (e.g. CTT) in
order to create new dashboards.

Finally, Grafana is quite flexible and the user can easily generate graphs and most importantly,
dynamically embed them in any Web based application (e.g. IDE).

3.2 Template library

The template library is the place to store the TOSCA particles, corresponding Ansible playbooks
and TOSCA CSARs describing a particular application. This section will present the high level
overview of the integration of template library with current tools, while a more detailed description
of the content will be in the deliverable D5.3: Technology Library.

3.2.1 Description and interfaces

Essentially, the template library is a self-contained set of artifacts that enables modeling and
orchestrating the deployments of various microservice set-ups including containerized and
FaaS-based applications together with data and network flows. To support modeling and
orchestration, the library must provide (i) a set of modeling constructs called RADON particles that
cover all required component types such as provider-specific FaaS-hosted functions, e.g., AWS
Lambda or OpenFaaS, (ii) a set of artifacts supporting orchestration of these modeling constructs,
i.e., the so-called FaaS abstraction layer, and (iii) a set of blueprints that, essentially, are modeled,
orchestrator-ready example applications representing a spectrum of typical RADON use cases. In
the following, we briefly describe the purpose of template library’s constituents.

RADON particles.

RADON particles is a set of TOSCA modeling constructs enabling specification of the application
components required by RADON use cases such as microservice and FaaS-based applications and

Page 19 of 47

Deliverable 5.1: Runtime Environment 1

data pipelines. The first version of RADON particles was defined in the scope of the deliverable
D4.3 - RADON Models I; it is open source and is hosted on GitHub . 1

FaaS abstraction layer.

FaaS abstraction layer is a set of configuration management scripts allowing to orchestrate the
deployment for components represented by RADON particles. For example, to successfully deploy
a FaaS function to AWS Lambda, a set of actions have to be performed by the orchestrator. FaaS
abstraction layer provides a set of executable Ansible playbooks that support deploying RADON
particles-based components.

RADON blueprints.

The purpose of RADON blueprints is twofold: (i) showcase the deployable demo applications that
represent use case applications typical for RADON’s scope, and (ii) provide a set of boilerplate (but
orchestrator-ready) application architectures that can be reused by RADON modelers to implement
more advanced use cases.

From the modeler’s perspective, the interaction with the template library typically follows a
specific workflow. In the following, we elaborate on the aspects of interaction with the template
library including such details as the modeling entry points, i.e., how IDE and GMT can facilitate
interacting with the template library, which interfaces are needed, and which features, e.g.,
versioning using Git, can be a part of the workflow.

Interaction entry points.

There are several possible ways to interact with the template library, namely a standalone usage of
the library, interacting with it via the RADON IDE, or interacting with the library via the GMT.

A. Standalone Template Library

Since the template library is hosted on GitHub, it can be accessed and used as a regular Git
repository. This, however, mostly applies to extending the existing sets of models, configuration
management scripts, and blueprints following the recommended GitHub workflow.

B. IDE and Template Library

RADON IDE is based on Eclipse Che and can serve as another entry point for interacting with the
template library. The envisioned workflow is to support initialization and synchronization of the
template library with the project environment, created in the IDE. As a result, modelers can use the
available types directly from the IDE or by accessing them by means of the GMT.

C. GMT and Template Library

Graphical modeling of application topologies is another entry point for interacting with the
template library, since all the types and artifacts available in it will be used by modelers to

1 https://github.com/radon-h2020/radon-particles

Page 20 of 47

https://github.com/radon-h2020/radon-particles

Deliverable 5.1: Runtime Environment 1

construct application topologies in a graphical fashion. This entry point is envisioned to be one of
the main ways to reuse the elements from the template library in modeled applications.

Interfaces and features.

1. GMT interfaces

As the main storage mechanism, Eclipse Winery relies on the file-based repository which stores all
the available modeling constructs. To interact with the repository, Winery provides graphical user
interfaces for managing the repository and for application modeling. Internally, both graphical
interfaces rely on Winery’s REST API, which can also be used separately. When imported into
Winery’s repository, the template library becomes available for reuse to modelers. This includes
modifying available library elements and creation of graphical models using these elements. As an
extension point, Winery’s REST API can be also used by other tools to query the information about
the available modeling constructs, application blueprints, etc.

2. Envisioned IDE interfaces

RADON IDE is intended to support creating the RADON modeling projects and facilitate
communication with the RADON toolchain. As a part of the envisioned workflow, the IDE will
support initializing new projects together with the template library made accessible, e.g., for
Winery’s repository. Additionally, the template library initialized for a project needs to be
synchronized with the original template library hosted on GitHub.

3. GitHub interfaces

The interaction with the template library via GitHub relies on the APIs and tooling provided by
GitHub and follows the standard GitHub workflow.

4. Versioning of elements in the template library

The file-based repository in Eclipse Winery supports integration with Git, which makes it easy to
manage versions of repository elements, revert changes, etc. This also provides a possibility to
directly synchronize with the template library in the case if it follows the structure of Winery’s
repository: it can be cloned from GitHub and used as-is for management and modeling purposes.

3.2.2 Installation and setup

A Git-based repository of a predefined structure that groups TOSCA entities in the corresponding
clusters such as “node types” or “service templates” and considers the namespaces is initialized
automatically in Eclipse Winery. The installation of Winery is described in-detail on Winery’s
web-site. The template repository has to be manually imported into Winery, and Git-related
operations are currently decoupled from available GUIs. This means that all Git and
synchronization operations have to be performed manually.

Page 21 of 47

Deliverable 5.1: Runtime Environment 1

3.2.3 Current maturity level

The set of RADON particles is described in detail in the deliverable D4.3 “RADON Models I”. The
definitions of the described application components, both abstract and provider-specific, are open
sourced and available vie GitHub . At this stage, the particles repository contains more than 30 2

distinct elements. In addition, the particles repository contains two preliminary examples of a
modeled application. However, the element definitions are not complete and expected to be
changed based on the requirements arising from the use case and other tool owners, e.g., the
orchestrator. Moreover, apart from enriching existing particles, new elements will need to be added
to support modeling of relevant provider-specific services.

3.2.4 Toy example demo

While there is a preliminary version of the toy example modeled in the particles repository, it is not
yet compatible with the orchestrator tool. Since some of the defined particles will be updated and
might also change based on the refined requirements, the deployable definitions of the toy example
applications will be produced in the next iteration of RADON Models deliverable.

3.2.5 Future plans

As discussed previously, in the future, the template library will combine the refined version of
RADON models, corresponding artifacts for orchestrating the deployment of these models, and a
set of deployable toy application examples. Additionally, the technical aspects of interacting with
the Template Library will be enhanced, e.g., improved versioning, support for integration of several
template libraries with different content.

3.3 Delivery toolchain

3.3.1 Description and interfaces

Delivery toolchain represents a unified entry point to configure all components that are part of the
application lifetime (CI/CD, orchestrator and monitoring). It also describes how the other
standalone tools are used together to provide complete delivery of the application. Continuous
integration (CI) tool validates the provided CSAR (Cloud Service Archive) that defines the
application from an integration perspective using unit tests or even canary testing. It also provides
the functionalities to compile, test and package the application. Continuous delivery (CD) expands
on CI and provides the tools for deployment of the application. The main steps in this process are a
check of the packaged application, deployment, testing the response in production and update. The
orchestrator is an integral part of CI and CD. It puts the application into the runtime environment
and enforces the state described in CSAR for testing or production environment. It also configures
the monitoring component that provides the crucial information required to trigger events and take
action. More general description of the delivery toolchain is given in previous deliverables D2.1

2 https://github.com/radon-h2020/radon-particles

Page 22 of 47

Deliverable 5.1: Runtime Environment 1

Initial requirements and baselines [RadD2.1] and D2.3 Architecture and integration plan I
[RadD2.3].

3.3.2 Installation and setup

At this point every tool of the delivery toolchain is provided as a standalone component and has its
own installation and setup instructions that are described in the other sections of this document. The
delivery toolchain will need a detailed setup in a sense of connecting the whole application delivery
and management pipeline, that will be further investigated and prepared for Y2.

3.3.3 Current maturity level

In terms of functionality the maturity level of delivery toolchain depends on each of the tools it
comprises. Maturity level of other tools is described in other sections of this document. A unified
setup point that represents a single place for configuration and execution of the involved tools has
not yet been realized and it is planned for Y2.

3.3.4 Toy example demo

At this point the toy example makes use of the monitoring, orchestrator and the CI workflow which
is an expected result for Y1. Mentioned tools currently work isolated with minimal or no
interaction between them and this deficiency will be the focus for Y2. Examples, how each tool
works with the toy example is presented in tool related section.

3.3.5 Future plans

Future plan is to provide a realization of a unified configuration management of the delivery
toolchain that will allow IDE and other tools to work with only a single entity instead with each
intrinsic component individually. To achieve this step by step, the expected interfaces from the
architecture deliverable D2.3 will be aligned with current available interfaces presented in this
document. The mapping will allow us to understand what is missing and the D5.1 provides us a
first overview how the missing parts can be achieved or started to be tackled.

3.4 Orchestrator

3.4.1 Description and interfaces

The orchestrator puts the application into the runtime environment with enforcing the state
described by application blueprint (CSAR) onto the targeted provider(s). The common operations
are deployment, scaling and cleanup or un-deploy and are executed on different target environment
as staging, development and production. More detailed description of the functionalities is given in
deliverable D2.3 Architecture and Integration plan. Functionalities are a part of the application
lifecycle. The first step is to deploy the application and the last step is to un-deploy it. Scale and
update functions can happen anytime during the application lifecycle.

RADON will use xOpera orchestrator, which aims to be a TOSCA-compliant orchestrator with a
core design presented on Figure 4. At its core, xOpera orchestrator is composed of:

Page 23 of 47

Deliverable 5.1: Runtime Environment 1

 1. TOSCA parser that transforms input YAML documents into a topology template, and

 2. execution engine that executes user-defined operations.

The parser part is pluggable and is designed to allow adding support for different TOSCA versions.
At the moment, xOpera orchestrator only supports a subset of TOSCA Simple Profile 1.2. We have
a TOSCA Simple Profile 1.3 compliant parser in the works but is not ready for prime time yet.

A topology template is a directed acyclic graph (DAG) of nodes, modeling the dependencies
between the nodes. These dependencies are used by the execution engine to determine the
processing order.

The execution engine will run operations in parallel if possible. What this means is that the
operations on the nodes with satisfied dependencies will be executed concurrently. In the current
implementation, this parallel execution is not implemented yet. Instead, we determine the order of
the operations by topologically sorting the DAG and executing operations one after another. Note
that at the moment, operations defined in the Configure interface of the relationships are not
executed. This is also something that will change with the next release of the xOpera orchestrator
orchestrator.

And while the parser parts of the xOpera orchestrator only deal with YAML documents, the
executor is also responsible for executing other artifacts from the CSAR. Currently, xOpera
orchestrator expects to be running at the top level of the extracted CSAR, but this limitation will be
lifted in the near future. Another limitation of current implementation is related to secondary
artifacts. At the moment, xOpera orchestrator only knows how to handle primary implementation
artifacts. All other dependencies are ignored.

When the scheduler part of the executor is improved, xOpera orchestrator will be able to execute
multiple operations at the same time. And since those operations are rarely processor and memory
intensive, we should be able to run quite a few of them on a single reasonably sized control node.
Since xOpera orchestrator uses Ansible as a final effector, and we do have quite some experience
with it, our estimate would be that running 10-20 parallel operations should be feasible even on a
low-level hardware.

xOpera orchestrator does not offer any service facilities. It is designed to be used from the
command-line in interactive mode. But its core is a Python library that can be embedded in other
services if so desired. For example, we could create a web interface that would offer another way of
managing our deployments.

If the TOSCA standard gets a well-defined support for listening for events, we might need to make
at least part of the xOpera orchestrator available as a service, but event mechanism are not in a state
where we could implement them yet.

Page 24 of 47

Deliverable 5.1: Runtime Environment 1

Figure 4. The xOpera orchestrator core design.

The xOpera orchestrator is packed in opera Python package and invoked by running the opera
command. At this time two functionalities are supported, namely deploy and undeploy. They can be
utilized with additional positional arguments. Console help message that describes the usage of the
orchestrator is shown below.

usage: opera [-h] {deploy,undeploy} <name> <template.yaml>

positional arguments:

Page 25 of 47

Deliverable 5.1: Runtime Environment 1

 {deploy,undeploy}

deploy Deploy service template from CSAR

undeploy Undeploy service template

optional arguments:

 -h, --help show this help message and exit

At this stage the orchestrator commands can only be executed through command line interface
(CLI), which is an appropriate way to execute for CI/CD tools. In the future it is intended to use the
orchestrator as a deployed server supporting REST API service. This additional interface would
allow an easier integration with other RADON components (e.g. monitoring) and also ease the
management of the day two operations such as scaling, reshaping and un-deploying an application.

3.4.2 Installation and setup

The orchestrator can be downloaded from the xOpera GitHub and installed following the 3

instructions from a GitHub readme page. The requirements to run xOpera are Python virtual
environment and Python interpreter.

Currently there is no particular setup solely for the orchestrator, the only requirement is to have a
whole deployment TOSCA blueprint yaml downloaded and accessible from xOpera. However, the
blueprint can have dependencies or special requirements related to the deployment. One example of
those would be the libraries for particular providers (e.g. boto3 in case of Amazon) or credential
management for particular provider.

3.4.3 Current maturity level

The xOpera orchestrator, which is used in RADON delivery toolchain is a lightweight TOSCA
compliant orchestrator. The version 0.1.0 issued on May 2019 is compliant with TOSCA YAML
v1.2 with limited functionality on specific executions of TOSCA types.

The recent release tagged with version 0.5.0 includes a new parser, which is compliant with
TOSCA YAML v1.3 standard. The new parser is more human-friendly with more informative
outputs of the YAML validation. Additionally the latest version supports uncompressed CSAR
blueprints.

Current level of maturity fulfills a subset of requirements expressed in the RADON requirements
table. Orchestrator already supports CLI commands and is able to deploy toy example Amazon
Lambda. Still there are necessary modifications to make on autoscaling and more advanced
functions that are not yet clear by TOSCA standard. On this matters RADON team will try to
improve the orchestrator in a best possible way to achieve this functionality and propose the
TOSCA standardisation group our result as a candidate for adoption into the standard.

3 https://github.com/xlab-si/xopera-opera

Page 26 of 47

https://github.com/xlab-si/xopera-opera

Deliverable 5.1: Runtime Environment 1

3.4.4 Toy example demo

Orchestrator can successfully deploy the RADON toy example to prove the functionality and to
demonstrate the complexity and completeness of this task. The necessary skills to run the example
is being familiar with Linux shell, Git and Python virtual environment, additionally it is beneficial
to be familiar with Amazon Lambda and setting AWS credentials. The whole list of tasks that
consist of the walkthrough steps of the orchestrator installation and toy example deployment is
available in the Appendix: Walkthrough: Use the Orchestrator to deploy RADON toy example.

3.4.5 Future plans

The immediate improvements to be made on the orchestrator depend on the development of
template library and the integration of monitoring and scaling requirements. Firstly, with template
library improvements, orchestrator will be able to deploy more complex applications to the wider
range of cloud providers. Secondly, the monitoring capabilities and scaling requirements of the use
cases will provide the guidance for a development of (auto)scaling functionality. The (auto)scaling
is also interesting for the TOSCA standardisation group, as currently it is not yet fully covered by
the standard.

Next important step that goes in hand with all future plans is the integration of the orchestrator into
the whole delivery toolchain. The orchestrator has an important role in the delivery toolchain and is
tightly connected with deployment, CI/CD and monitoring process, therefore a careful planning of
the integration needs to be outlined as soon as possible.

3.5 Continuous integration

3.5.1 Description and interfaces

Continuous integration is the principle of frequently merging your work with the main branch.
Doing this, enables faster feedback for your changes and lets your colleagues build upon your
contribution. CI is not a RADON tool in itself, but rather a workflow we want to adopt in the
runtime environment. We achieve this by including the RADON tools into the integration
workflow, where we follow infrastructure from the design stage through passed tollgate and into
the master branch. An important assumption for CI is the adoption of infrastructure as code, and as
a result, version control. The process of CI is commonly implemented with a CI server. The CI
server works as an objective validator of code quality and a tollgate for integration. Furthermore, it
is common practice not to allow direct push to the master branch, but let the commits go through
pull requests where they can be reviewed and discussed.

There is a vast set of alternatives in this space, although the functionality is more or less the same.
It is common to divide them into two main categories; self hosted and SaaS. Within self hosted
alternatives, you find tools like Jenkins, a stand alone web-based server. With Jenkins, you have to
configure and maintain the master node and worker nodes that handle the workload. Alternatively,

Page 27 of 47

Deliverable 5.1: Runtime Environment 1

in the SaaS area, you find tools like Circle-CI, where you pay for the amount of concurrent jobs and
size of the machines needed.

Praqma’s main contributions around CI are twofold. One is to set requirements towards the other
tool providers so that the relevant tools can be integrated into a CI pipeline. The other part is to
provide quality and security toll gates as functions, for continuous, automated validation.

3.5.2 Installation and setup

Select CI provider based on the needs of your project. CI as a cloud service is definitely becoming
the new standard and is also the easiest way of kickstarting CI with your project. In this example
we focus on Circle-CI. Their free tier subscription is often sufficient for small projects.

Create account

Log into Circle-CI with your GitHub or Bitbucket account. Once logged in, the browser will give
you an overview of existing projects related to your user and organization where you are an owner.
By pressing the ‘Add project’ in the left menu, you can select which project you want to follow
based on the list of available projects.

Create config file

In your git project root folder, create a folder called “.circleci”. In the folder, create a file called
config.yml: this config file will be a declarative description of the integration pipeline. When a CI
job is triggered, the CI server interprets the config file and carries out the work. Examples of
pipeline description are ‘when should it run’, ‘in what environment should it run’, ‘the order of
execution for each job’, ‘the caching of data between jobs’.

The following config shows a workflow where a test runs in parallel. The two jobs are defined as
‘test_py2’ and ‘test_py3’, and use a Docker image to setup the testing environment. The idea is to
automate the testing across the two versions of python.

Page 28 of 47

Deliverable 5.1: Runtime Environment 1

Figure 5. config.yml example

Configure necessary tools

The next step is to include the available RADON tools into the config file, and let the CI server
automate the validation of code.

3.5.3 Current maturity level

At this stage, the RADON toy example is used as a simple integration example . This will work as 4

a baseline for the continuation of CI and CD. The current status is a single job triggered by new
commits to a feature branch.

3.5.4 Toy example demo

GitHub, Gitlab and Bitbucket all support integration with common CI servers like Jenkins, Travis,
Circle-CI. In the Toy Example scope, let’s assume the following scenario:

Let’s say you need to change the memory allocation of the lambda function. You then make a
branch and continue to do your code changes. Now you have a newly generated RADON model
blueprint and want to integrate your changes with the “master” branch. Push your changes to the git
server and open a pull request. The last commit will trigger the CI server to run a predefined
pipeline definition. This integration pipeline will take your changes and validate the quality
according to your defined policies. In the RADON framework environment, a set of toll gates
would be the same as shown on Figure 6:

4 https://github.com/naesheim/tosca-blueprint-aws-lambda

Page 29 of 47

https://github.com/naesheim/tosca-blueprint-aws-lambda

Deliverable 5.1: Runtime Environment 1

Figure 6. Tollgate example

Now the result from the CI server will be visible in the Pull Request. If the tollgate fails, you will
need to reiterate the development process and make a new commit. If it succeeds, you can ask your
colleagues for a code review before the final integration. The more tollgates you integrate and
automate in the CI pipeline, the less time your colleague will spend reviewing your changes and the
faster the integration cycle will be.

3.5.5 Future plans

The future plan is divided into three action points:

1. Facilitate integration for each tool into a CI environment. We will achieve this by delivering
a best practice approach and guidance for the relevant tool owners.

2. The next stage will be to look into how we can automate security scans and code review
with FaaS, and include these into the CI pipeline.

3. Create templates and pseudo code config files for easier adoption from an end user
perspective. Each CI provider has its own specific config syntax, making a pseudo config
prevents tool lock-in with a specific CI provider.

3.6 Continuous deployment

3.6.1 Description and interfaces

There are several benefits of using continuous deployment; for one, it speeds up shipping new
features to end users and shortens feedback loops. Thus, teams become more agile. Additionally,
decreasing the size of each deployment statistically reduces the risk of introducing bugs and further
improves quality. Continuous deployment shares many similarities with continuous integration. In
fact, for many, it is a continuation of CI. Once your changes have gone through the CI pipeline and
are integrated on the master branch. A similar CD pipeline gets triggered; this time to deploy the
changes to production.

Page 30 of 47

Deliverable 5.1: Runtime Environment 1

For implementing CD, you also use a CI server. By deploying from a CI server where source code
is co-located with the deployment configuration, you achieve traceability and reproducibility.
Traceability is achieved in the form of having audit trails of the deployment events and people who
were involved in them. Reproducibility is achieved in the form of being able to reproduce a specific
deployment from the version control history. Alternatively, deploying from a local machine opens
up the risk of a 'dirty workspace' where that machine can contain local state which is not available
on other machines. This prevents others from deploying since they lack that local state.

3.6.2 Installation and setup

The configuration of the descriptive deployment recipe is also merged with the CI config. Which
pipeline that is executed is then determined by the branch that was changed. Commonly, feature
branches trigger the integration pipeline; changes to master branch, trigger the deployment pipeline.

3.6.3 Current maturity level

Similar to the status of CI, we have a simple example of deploying AWS resources to production
upon new commits to master.

3.6.4 Toy example demo

If we continue the example from continuous integration, we assume the CI pipeline succeeded,
code review was carried out and the changes were validated for integration with the master branch.
The set of changes related to the latest collection of commits merged into master, will constitute the
delta of the new deployment.

3.6.5 Future plans

The main area of focus as the project matures, will be the integration of the different tools into the
pipeline. Within the delivery toolchain, CD plays an important role. Securing a seamless
connection with the monitoring setup will be the initial focus. Secondly we’re looking into
alternative deployment methods. Dark launches, canary deployment and A/B testing are methods
we want to experiment with in the delivery toolchain. Similar to the approach with CI, we don’t
want to enforce a tool on the end user, but rather facilitate an easy integration of the RADON CD
practice into the CI tool. That being said, we will provide CI/CD pipeline suggestion as pseudo
code, CircleCI and Jenkins.

3.7 Function Hub

3.7.1 Description and interfaces

Serverless functions are packaged as compressed files containing code and configurations for
running the functions on a targeted cloud platform. When deploying a function to the cloud, one
must provide the compressed file of function’s code and configurations. Just like other software,

Page 31 of 47

Deliverable 5.1: Runtime Environment 1

function would evolve overtime with bug fixes and improvements and will have multiple versions.
Additionally, in some cases, one might need to replicate the same functionality of a function for
another cloud provider. Software providers and teams will need to store, share and collaborate on
functions.

Function Hub is a serverless service to host and share functions between teams and/or between
providers and users. Similar to other package managers, Function Hub allows creators of serverless
functions to publish their functions and allows functions’ users to pull and use those functions.

In the RADON context, functions are modeled within the GMT and then orchestrated by the
runtime environment. Function Hub will be integrated in the GMT to enable RADON users to
model functions and specify the function package from Function Hub. The Runtime environment
will pull the package and deploy it to the target cloud at runtime.

3.7.2 Installation and setup

As a part of Praqma’s use case, the Function Hub will be validated through the RADON
framework. This means we will share the setup instructions as the use ase matures. Until this stage,
Function Hub is available as a SaaS service at cloudstash.io.

3.7.3 Current maturity level

An alpha version of the Function hub is available at cloudstash.io. The Hub will support both
public and private repositories but currently only public repository for reusable functions are
available. Interaction with Function Hub is limited to browse and retrieval of functions through the
web UI or a serverless REST API.

3.7.4 Toy example demo

The toy example currently produces one function. This function will be published and served via
the Function Hub. The TOSCA model created in GMT will refer to the function location in the
Function Hub using a URL (e.g. repo.cloudstash.io/public-functions/aws/toy-app). Then at runtime,
the xOpera orchestrator pulls the function from the Function Hub and deploy it to production.

3.7.5 Future plans

The future work is grouped in three work packages.

- Common function format. The different cloud providers operate with different formats for
functions. In order to store and evolve the functions in a consistent way, we need a coherent
format. At this time, we are evaluating the adoption of the Helm repository format. Helm is 5

the Kubernetes package manager and is a CNCF project. The helm repository format is 6

simply a tar file with the package contents and an index file that contains metadata about the

5 https://www.helm.sh
6 https://www.cncf.io

Page 32 of 47

https://helm.sh/
https://www.cncf.io/

Deliverable 5.1: Runtime Environment 1

packages. The metadata for functions will include description of the target runtime, the
handler name, version, etc.

- Integration with GMT and xOpera. When creating a FaaS in GMT and specifying the
location of the function, you can reference the URL of the specific function from Function
Hub.

- General functionality. This backlog of new features will evolve as the tool matures and user
feedback creates new requirements. These requirements, feature requests and new
functionality will be handled as the project continues. A common CLI client, support for
private repositories are some examples of potential features.

Page 33 of 47

Deliverable 5.1: Runtime Environment 1

4 Conclusions and Future Work
This deliverable presents an overview of the current status of the Runtime environment and all the
tools that are/will be integrated. The overview includes all the required information to equip the
reader with the ability to deploy tools and understanding the requirements related to dependencies
and potential interfaces. However, to have a compliance overview on one place, Table 3 shows an
overview of the level of fulfillment for each of the agreed requirements. The labels specifying the
“Level of fulfillment” are defined as follows:

(i) ✗ (unsupported): the requirement is not fulfilled by the current version

(ii) ✔ (partially-low supported): a few of the aspects of the requirement is fulfilled by the current
version

(iii) ✔✔ (partially-high supported): most of the aspects of the requirement is fulfilled by the
current version

(iv) ✔✔✔ (fully supported): the requirement is fulfilled by the current version.

Currently most of the requirements does not fulfill the requirements as we are still in the early stage
of the project. During the project the table will be updated and this tracking of the work will be
useful for the tasks in WP2-WP5.

Table 3. Achieved level of compliance to RADON requirements

Id Requirement Title Priority Level of
compliance

R-T5.1-1 The orchestrator tasks must be executable through CLI SHOULD_HAVE ✔✔✔

R-T5.1-2 A user describes the application architecture and
dependencies at least in TOSCA YAML 1.2

MUST_HAVE ✔

R-T5.1-3 The runtime toolchain need to provide a status on each
stage of deployment of the application on the underlying
architecture

MUST_HAVE X

R-T5.1-4 At the end of deployment the deployment of services
needs to be verified and its dependencies

MUST_HAVE X

R-T5.1-5 The orchestrator should be able to calculate the diff
between the current state and the desired state expressed
by a new model version and redeploy only the difference.

MUST_HAVE X

R-T5.1-6 Support of FaaS deployment to OpenFaas MUST_HAVE ✔

R-T5.1-7 Support of FaaS deployment to AWS cloud platform MUST_HAVE ✔✔

R-T5.1-8 The xOpera command line interface needs to have a dry COULD_HAVE ✔

Page 34 of 47

Deliverable 5.1: Runtime Environment 1

run mode to verify changes without asking for input in
execution

R-T5.1-10 When modelling a FaaS, the user can select a specific
function by referencing the location from Function Hub

COULD_HAVE X

R-T5.2-8 Support of FaaS_deployment to Google cloud platform COULD_HAVE X

R-T5.2-9 Support of FaaS deployment to Azure cloud platform MUST_HAVE ✔

R-T5.2-10 Support deployment to regular VMs MUST_HAVE ✔✔

R-T5.2-11 Support deployment to microservices architecture MUST_HAVE ✔

R-T5.3-1 The TOSCA blueprint needs to be able to support the
definition of security and privacy policy of specific
serverless/FaaS provider.

MUST_HAVE X

R-T5.3-2 The tool must be able to configure automatic scaling of the
deployed components based on the auto scaling policies
defined in the RADON models.

MUST_HAVE X

R-T5.3-3 The tool must be able to support configuring AWS EC2
auto scaling service based on the TOSCA auto scaling
policy.

MUST_HAVE X

R-T5.3-4 The tool should be able to support configuring automatic
scaling of Docker services based on TOSCA auto scaling
policies.

SHOULD_HAVE X

R-T5.3-5 The TOSCA blueprint must be able to enable users to
define the usage of different FaaS/Serverless providers for
different parts of their application.

MUST_HAVE X

4.1 Future work

The deliverable presents runtime environment tools and explains together the future development
plans for each tool.

In a nutshell, the document forecasts future release of the monitoring that will support a wider
range of metrics to monitor and improve on the interaction with the other tools. The level of
automation in deployment of monitoring configuration will also be improved. The template library
will be refined and improved in terms of improved versioning and support for integration of several
template libraries. Delivery toolchain will provide a unified configuration management for the other
tools. The orchestrator functionality depends on the template library. Its future improvements will
enable deployment of more complex applications to the wider range of cloud providers powered by
template library. The (auto)scaling functionality and integration into the whole delivery toolchain
is also planned for future work. The future plan for the CI/CD is to provide guidance for integration

Page 35 of 47

Deliverable 5.1: Runtime Environment 1

of other tools into a CI environment. Templates and pseudo code config files will also be prepared
for easier adoption. Some alternative deployment methods will also be experimented with in the
delivery toolchain. Future work for the function hub consists of using a common function format
for storage, integration with GMT and xOpera and other general functionality improvements.

However, to coordinate the development of the Runtime environment through Y2 also the
integration plan is required. One important way is to plan the scaling and auto scaling which means
that the configuration of monitoring and development of the orchestrator has higher priority. On the
other hand, data pipelines integration and support for different providers is maintained through
template library. This means that Template library and integration of monitoring are currently most
important.

Page 36 of 47

Deliverable 5.1: Runtime Environment 1

5 References

[RadD2.1] RADON Consortium, “Deliverable D2.1 - Initial requirements and baselines”, 2019

[RadD2.3] RADON Consortium, “Deliverable D2.3 - Architecture and integration plan I”,
2019

6 Appendix A

6.1 Walkthrough: Use the Orchestrator to deploy RADON toy example

In this section we present a detailed instructions on how to deploy the application of thumbnail
generation with xOpera. The application can be deployed on one of the supported serverless
computing platforms, in this case AWS Lambda . TOSCA Blueprint is used to describe the storage, 7

functions, triggers and relationships. The commands given in the instructions assume the usage of
Linux operating system.
First step is to clone the repository that contains the TOSCA blueprint for xOpera orchestrator with
command:

git clone https://github.com/radon-h2020/tosca-blueprint-aws-lambda.git

Change your working directory to the downloaded project. Before we deploy the application, we
will prepare the python environment and install necessary requirements. It is recommended that a
Python virtual environment is used. This is an isolated and self-contained directory tree that
contains a particular version of Python and installation of additional packages. Virtual environment
can be created and activated with commands:

python3 -m venv .venv

source .venv/bin/activate

Before we can deploy the application we need to configure our AWS credentials. Some additional
Python packages are needed in order to perform this step, namely botocore and boto3. The user
then needs to input the following information: AWS Access Key ID, AWS Secret Access Key,
Default region name and Default output format. Package installation and AWS credentials
configuration is done with commands:

7 https://aws.amazon.com/lambda/

Page 37 of 47

https://aws.amazon.com/lambda/

Deliverable 5.1: Runtime Environment 1

pip install botocore boto3

aws configure

The next step is to install the xOpera orchestrator. The orchestrator depends on the ansible package.
In this case we will install the development version, but version 2.9 should also be fine. The
installation is done with the following commands:

pip install git+https://github.com/ansible/ansible.git@devel

pip install opera

At this point our environment is set up and ready to deploy applications. In this case we will deploy
a toy example, i.e., the application of thumbnail generation. A ready to deploy zip package can be
downloaded from GitHub repository given below. The instructions on how to prepare a zip
package for a custom function are also given in this repository.

https://github.com/radon-h2020/FaaS-thumbnail-generator-python/tree/master/binar

y-zip

The current version of xOpera orchestrator does not support the lookup function. Because of this
the location of the application package and AWS policy file is set to a fixed path, namely the /tmp
folder. The application zip package and policy file (contained in the first cloned repository) needs
to be copied to this folder. Note that this is a temporary limitation. If your working directory has
not changed and the downloaded toy example is located in the default Downloads folder, then the
following commands can be used to place the files in the appropriate folder:

cp playbooks/aws_role/policy.json /tmp/

mv ~/Downloads/X-test-ImageRes.zip /tmp/

The last step of the setup before we are ready to deploy the application is to set the desired names
for the function and storage buckets on AWS. This is done by editing the properties in the
configuration YAML file located in the TOSCA blueprint repository. Open the
resize_service_opera.yml and edit the values of properties function_name and bucket_name in the
topology_template section. Toy example can now be deployed using the following command:

opera deploy demo-deploy resize_service_opera.yml

If the deployment was successful then the created function and storage buckets should appear in the
AWS console as shown in Figure 7 and Figure 8.

Page 38 of 47

Deliverable 5.1: Runtime Environment 1

Figure 7. Toy example function deployed on AWS Lambda.

Figure 8. Storage Buckets configured on AWS S3.

To demonstrate the usage of the deployed toy example we can upload the image in the input bucket
named radon-demo in this case. This will trigger the image resize function and the output image
will appear in the output bucket named radon-demo-resized in this case.

6.2 Walkthrough: General purpose Monitoring Tool Setup

Installation and Setup

● Docker
Read the instructions from the official website https://docs.docker.com/install/

● cAdvisor
cAdvisor (Container Advisor) provides container users an understanding of the resource
usage and performance characteristics of their running containers. It is a running daemon
that collects, aggregates, processes, and exports information about running containers.
Specifically, for each container it keeps resource isolation parameters, historical resource

Page 39 of 47

https://docs.docker.com/install/

Deliverable 5.1: Runtime Environment 1

usage, histograms of complete historical resource usage and network statistics. This data is
exported by container and machine-wide.

To set up a cAdvisor container instance run the following:

docker run \
--volume=/:/rootfs:ro \
--volume=/var/run:/var/run:rw
--volume=/sys:/sys:ro \
--volume=/var/lib/docker/:/var/lib/docker:ro \
--publish=8080:8080 \
--detach=true \
--name=cadvisor \
google/cadvisor:latest

● Prometheus Pushgateway
The Prometheus Pushgateway exists to allow ephemeral and batch jobs to expose their
metrics to Prometheus. Since these kinds of jobs may not exist long enough to be scrapped,
they can instead push their metrics to a Pushgateway. The Pushgateway then exposes these
metrics to Prometheus.

To set up Prometheus Gateway :

docker run -d -p 9091:9091 prom/pushgateway

● Prometheus
Prometheus is an open-source system monitoring and alerting toolkit originally built at
SoundCloud. Since its inception in 2012, many companies and organizations have adopted
Prometheus, and the project has a very active developer and user community. It is now a
standalone open source project and maintained independently of any company. To
emphasize this, and to clarify the project’s governance structure, Prometheus joined the
Cloud Native Computing Foundation in 2016 as the second hosted project, after
Kubernetes.

To set up Prometheus:

docker run -p 9090:9090 -v /tmp/prometheus.yml:/etc/prometheus/prometheus.yml \
prom/prometheus

To set up prometheus we have to provide a configuration file like the following

Page 40 of 47

Deliverable 5.1: Runtime Environment 1
scrape_configs:
-
 job_name: monitor
scrape_interval: 5s
static_configs:
-
targets:
- "cadvisor(ip):port"
- "pushgateway(ip):port"

For now we only care about targets (locations of metrics to scrape) and scrape interval
(frequency of scrape).

You can find more details about configuration here:
https://prometheus.io/docs/prometheus/latest/configuration/configuration/

● App configuration

In order to get applications metrics we have to export them first. To achieve that, follow the
instructions below:

1. Download metricsfn.js and reqtimes.js and import them into your root js file (or the
relevant root file of the user application)

var reqtimes = require('./path_to_reqtimes.js')
var metricsfn = require('./path_to_metricsfn')
metricsfn.init('ip_of_pushGateWay')

2. Add as middleware the following functions:

app.use(metricsfn.requestCounters)
app.use(metricsfn.pushgtw)
app.use(reqtimes(metricsfn.client))

3. Get function Execution time:

metricsfn.execution_time.setToCurrentTime();
let end = metricsfn.execution_time.startTimer();

function test(){
// code …
metricsfn.exec_time_end(end, arguments.callee.name)
// exit function
}

Page 41 of 47

https://prometheus.io/docs/prometheus/latest/configuration/configuration/

Deliverable 5.1: Runtime Environment 1

4. (Optional) You can also inject /metrics route to access metrics from the App and not
through prometheus gateway.

app.get('/metrics', function (req, res) {
res.end(metricsfn.client.register.metrics());
});

After everything is done, visit prometheus and you will able to access metrics.

● Grafana
For better visualization,alerts management and dashboards you can use grafana.You can
check the documentation from here: https://grafana.com/docs/

Set up grafana with docker:

docker run -d -p 3000:3000 grafana/grafana

Once Grafana is installed, the sources of the incoming metrics have to be defined. The
available sources can be:

● Prometheus
● AWS Cloudwatch
● Azure Monitor
● Elasticsearch
● Google Stackdriver
● Graphite
● InfluxDB
● Loki
● Microsoft SQL Server (MSSQL)
● Mixed
● MySQL
● OpenTSDB
● PostgreSQL
● Testdata

Information on how to install and configure the sources can be found here . 8

After the sources are configured, the user can either create dashboards or import them from
the provided available dashboards found here . 9

8 https://grafana.com/grafana/dashboards
9 https://grafana.com/grafana/dashboards

Page 42 of 47

https://grafana.com/docs/
https://grafana.com/docs/features/datasources/
https://grafana.com/grafana/dashboards

Deliverable 5.1: Runtime Environment 1

For each created dashboard the user has to provide:

● The Source (listed above)
● The query (which is the configuration that collects the metrics-data)

For example:

● If the user wants to monitor the CPU usage of a container the source is Prometheus
(which ingests data from CAdvisor) and the relevant query is:

 rate(container_cpu_user_seconds_total{name="Container_name"}[30s])*100

● If the user wants to measure the RAM usage of a container the source is Prometheus
(which ingests data from cAdvisor) and the relevant query is:

container_memory_usage_bytes{name="Container_name"}/1000000

● If the user wants to measure the incoming traffic towards an application deployed in
a container the source is Prometheus (which ingests data from cAdvisor) and the
relevant query is:

rate(container_network_receive_bytes_total{name="Container_name"}}[30s])/100

0000

● If the user wants to measure the outcoming traffic from an application deployed in a
container the source is Prometheus (which ingests data from cAdvisor) and the
relevant query is:

irate(container_network_transmit_bytes_total{name="viarota"}[5m])

In general the query syntax depends on the source from which the data are ingested. In case
of prometheus the user needs to get competent around PromQL. More info about PromQL
can be found in the basic section and the examples of Prometheus.

Page 43 of 47

https://prometheus.io/docs/querying/basics/
https://prometheus.io/docs/querying/examples/

Deliverable 5.1: Runtime Environment 1

In case the user wants to invoke an already predefined dashboard once again the relevant
source has to be defined and the relevant dashboard can be downloaded and configured
according to the list of available Grafana Dashboards.

6.3 Walkthrough: Toy Example Monitoring Tool Setup

The thumbnail generation application is deployed on an AWS Lambda function. Prior to
deployment, the source code of the application is injected with code in order to expose application
specific metrics (e.g. traffic, CPU and RAM usage).

Metrics directly exposed by Lambda functions are collected by Cloudwatch service (or any
equivalent Cloud Monitoring Services) and they are forwarded directly to Grafana for the
generation of the relevant real-time updated dashboards. These metrics include Lambda function
invocation duration, cost, errors, etc. On the other hand, metrics that are exposed through code
injection are pushed towards the Prometheus Pushgateway and subsequently towards Prometheus.
These metrics are RAM and CPU usage. After Prometheus collects these metrics it performs the
following parallel actions:

● Alerts can be generated based on defined rules on thresholds by the user. These
alerts can trigger subsequent actions.

● Metrics are forwarded towards Grafana for the generation of the relevant
dashboards.

Through this way, Grafana is the common ground for both General Metrics and Application
Specific Metrics monitoring. Once the dashboards in Grafana are created, the user can dynamically
define and embed them in the Centralized Monitoring Dashboard (see Figure 9).

Page 44 of 47

https://grafana.com/grafana/dashboards

Deliverable 5.1: Runtime Environment 1

Figure 9. Centralized Monitoring tool snapshot.

Below you can find detailed steps to deploy, setup and configure the Monitoring Tool adjusted on
the Thumbnail generation toy example:

Installation and Setup

● Prometheus Pushgateway
The Prometheus Pushgateway exists to allow ephemeral and batch jobs to expose their
metrics to Prometheus. Since these kinds of jobs may not exist long enough to be scrapped,
they can instead push their metrics to a Pushgateway. The Pushgateway then exposes these
metrics to Prometheus.

To set up Prometheus Gateway :

docker run -d -p 9091:9091 prom/pushgateway

● App configuration

In order to get the toy set applications metrics such as RAM and CPU the user has to expose
them first. To achieve that, the user has to inject some code in the application. This code
pushes the metrics to prometheus gateway and subsequently to Prometheus and Grafana
dashboards. The updated image_resize.py file can be found here.

Page 45 of 47

https://drive.google.com/open?id=1izc7rgTf7MTO2VjHInCPSPUirXT71pjt

Deliverable 5.1: Runtime Environment 1

● Grafana
For better visualization,alerts management and dashboards you can use grafana.You can
check the documentation from here: https://grafana.com/docs/

Set up grafana with docker:

docker run -d -p 3000:3000 grafana/grafana

Once Grafana is installed, the sources of the incoming metrics have to be defined. The
available sources can be:

● Prometheus
● AWS Cloudwatch

Information on how to install and configure the sources can be found here.

The metrics that are monitored in the case of thumbnail generation are:

● CPU
● RAM
● Duration
● Invocations
● Errors
● Throttles
● Global Concurrent Executions

In order to visualize this metrics in Grafana the following dqshboards have to be
configured:

1. CPU: The source of the dashboard is Prometheus and the relevant query is:

rate(cpu_usage_percent{exported_job="image_resize",instance="prometheus_push
_gateway_url:PORT",job="cadvisor"}[30s])

2. RAM: The source of the dashboard is Prometheus and the relevant query is:

memory_usage_bytes{exported_job="image_resize",instance="prometheus_push_g
ateway_url:PORT",job="cadvisor"}

Page 46 of 47

https://grafana.com/docs/
https://grafana.com/docs/features/datasources/

Deliverable 5.1: Runtime Environment 1

3. The rest of the metrics are visualized in predefined imported dashboards. this
predefined dashboards as well as how to configure them can be found here.

Note: Since one of the sources is prometheus, the user needs to get competent around
PromQL to syntax the queries for dashboards like CPU and RAM. More info about
PromQL can be found in the basic section and the examples of Prometheus.

Page 47 of 47

https://grafana.com/grafana/dashboards/593
https://prometheus.io/docs/querying/basics/
https://prometheus.io/docs/querying/examples/

